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Abstract

This study is to investigate the effects of huperzine A on memory deficits, neuronal damage and neurotrophic factors production after transient
cerebral ischemia and reperfusion in mice, as well as the potential downstream signaling pathway. Bilateral common carotid occlusion (BCCAo)
combined with systemic hypotension induced severe memory deficits in a water maze task and neuronal degeneration in cerebral cortex and
hippocampus in mice. Oral administration of huperzine A (0.2 mg/kg, once per day, started 2 days before surgery and lasted for 7 days after
surgery) markedly attenuated the memory deficits and neuronal damage. Meanwhile, huperzine A significantly increased the mRNA and protein
levels of NGF, BDNF and TGF-β1, and potentiated phosphorylation of MAPK/ERK 1/2 in both cerebral cortex and hippocampus compared with
transient cerebral ischemia and reperfusion group. This study provides evidence for the protective effects of huperzine A against transient cerebral
ischemia and reperfusion in mice, and suggests potentially important roles that neurotrophic factors might play in these effects. It also indicates
that the MAPK/ERK pathway might be involved in the in vivo neurotrophic effects of huperzine A against transient cerebral ischemia and
reperfusion.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Brain is highly sensitive to ischemic insults. Ischemia, such as
what occurs during acute ischemic stroke, mainly affects regions
of the cerebral cortex as well as the hippocampus, which is im-
portant for learning and long-term memory. Mechanisms by
which neuronal damage occurs involve elevation of intracellular
Ca2+ levels, overexcitation and generation of free radicals (Choi
and Rothman, 1990; Schurr and Rigor, 1992). However, there is
no comprehensive pharmacotherapy by far. At present, rescue of
damaged neurons and stimulation of neurogenesis are theoreti-
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cally attractive strategies for the treatment of neurodegenerative
diseases.

Several endogenous neurotrophic factors, including nerve
growth factor (NGF), brain-derived neurotrophic factor (BDNF)
and transforming growth factor-β1 (TGF-β1) have been
identified and found to be critical for development, differenti-
ation as well as maintenance of distinct populations of neurons.
NGF can ameliorate neuronal degeneration in rats subjected to
ischemic insults (Shigeno et al., 1991; Pechan et al., 1995).
BDNF was reported to significantly reduce the size of infarction
and neurological deficits in focal ischemic rats (Schabitz et al.,
1997). Additionally, exogenous BDNF administered prior to
ischemia has been shown to partially prevent neuronal death in
the CA1 area of the hippocampus (Beck et al., 1994). A couple of
studies demonstrate that TGF-β1 has the capacity to reduce the
infarct size after focal cerebral ischemia in mice and rabbits
(Prehn et al., 1993; Gross et al., 1993), and ameliorate injury in
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CA1 hippocampal neurons caused by transient global ischemia
in rats (Henrich-Noack et al., 1996). However, clinical use of
these neurotrophic factors is limited by their inability to reach the
brain after systemic administration. Therapeutic application of
neurotrophic factors therefore necessitates intracranial injec-
tions, transplantation of cells secreting neurotrophic factors or
gene therapy. Such approaches have produced promising results
in several animal models of cerebral ischemia (Shigeno et al.,
1991; Pechan et al., 1995; Schabitz et al., 1997; Beck et al.,
1994; Prehn et al., 1993; Gross et al., 1993; Henrich-Noack et
al., 1996; Yagi et al., 2000). Attempts are being made to discover
certain small molecules with the ability to activate or enhance
neurotrophic signaling, which might provide an alternative
therapeutic approach.

Neurotrophic factors exert their actions by binding to specific
transmembrane receptors with intracellular tyrosine kinase do-
mains. Ligand binding induces dimerization of the receptor and
activation of the intrinsic tyrosine kinase, leading to phosphor-
ylation of specific tyrosine residues located at the intracellular
domain. These events result in recruitment of a number of sig-
naling molecules, leading to activation of pathways including
kinases such as the mitogen-activated protein kinases (MAPK)/
extracellular signal-regulated kinases (ERK) (Cowley et al., 1994;
Xia et al., 1995). MAPK/ERK pathway modulates activities of
many transcription factors, and thus regulates biological res-
ponses such as proliferation and differentiation. Accumulating
data have shown thatMAPK/ERK pathway plays a pivotal role in
the neuroprotective effects of these neurotrophic factors (Takuma
et al., 2000; Han and Holtzman, 2000; Zhu et al., 2002).

Huperzine A, a novel Lycopodium alkaloid isolated from the
Chinese folk medicine Huperzia serrata, is a reversible and
selective inhibitor of acetylcholinesterase (AChE) and has been
used in clinical treatment of Alzheimer's disease in China (Xu et
al., 1995; Wang et al., 2006). Our previous studies have shown
that, besides inhibiting AChE, huperzine A possesses a broad
range of neuroprotective activities (Wang and Tang, 2005). It has
been reported that huperzine A can attenuate cognitive deficits
and neuronal damage after transient global ischemia in gerbils
(Zhou et al., 2001) and chronical cerebral hypoperfusion in rats
(Wang et al., 2000). We recently found that huperzine A can
increase NGF production in cultured astrocytes (Tang et al.,
2005a) and protect SHSY5Y neuroblastoma cells against oxi-
dative stress damage via promoting NGF production (Tang et al.,
2005b). In this study, we attempt to investigate whether huperzine
A exerts similar neurotrophic effects on transient cerebral is-
chemia and reperfusion-induced injury in mice and clarify the
underlying mechanism.

2. Materials and methods

2.1. Materials

Huperzine A, provided by the Department of Phytochemistry
in this Institute, is a colorless powder with m.p. 230 °C and
purity N99%. It was dissolved and diluted in phosphate-buffered
saline (PBS). NGF Emax® Immunoassay System, BDNF Emax®
Immunoassay System, TGF-β1 Emax® Immunoassay System
and Reverse Transcription System were purchased from
Promega (Madison, WI, USA). TRIzol reagent was purchased
from Invitrogen (CA, USA). Rabbit anti-phospho-ERK 1/2 and
rabbit anti-ERK 1/2 were purchased from Cell Signaling
Technology (MA, USA). Mouse anti-GAPDH was purchased
from KangChen (Shanghai, China). ECL plus Western blotting
detection system was purchased from Amersham Biosciences
(Piscataway, USA).

2.2. Animals

Male Kunming strain mice (SPF, certificate number SYXK
[Shanghai] 2003-0029), weighing 18–22 g, were purchased
from Shanghai Experimental Animal Centre, Chinese Academy
of Science. Animals were maintained in colony cages under an
ambient temperature of 22–25 °C, 50–60% relative humidity,
with a 12-h light/dark cycle and free access to food andwater. All
procedures were carried out in compliance with the Regulations
of Experimental Animal Administration issued by the State
Committee of Science and Technology of the People's Republic
of China on November 14, 1988.

2.3. Surgery and drug administration

Mice were overnight fasted from food but allowed free ac-
cess to water and then anesthetized with chloral hydrate (350 mg/
kg, i.p.). Core body temperature was recorded using a rectal
temperature probe and maintained at 37.0±0.5 °C using a heating
lamp throughout the procedure. Via surgical incision, the right
femoral artery was cannulated (PE 10, Becton Dickinson, Sparks,
MD, USA) to allow measurement of mean arterial blood pressure
(MAP). Operationwas performed as described in previous reports
(Zhao et al., 1998; Tang et al., 1998; Xu et al., 2004) with slight
modifications. Bilateral common carotid arteries were exposed
via a small ventral neck incision and occluded twice (10min each)
with microvascular clips and between the two periods of oc-
clusion, there was a 15-min reperfusion (ischemia 10 min–re-
perfusion 15 min–ischemia 10 min). During the period of first
occlusion, approximately distal 1 cm of tail was cut off and MAP
was reduced to 42±2 mm Hg by withdrawing 0.3 ml of blood.
After the operation, 1 ml saline was supplemented intraperitone-
ally. Sham-operated mice received the same surgical treatment
without occlusions, tail cut, hemorrhage and saline supplement.
Oral administration of huperzine A (0.2 mg/kg) or saline, once a
day, was started 2 days before the surgery and terminated on the
day of sacrifice. On the day of surgery, huperzine A was ad-
ministrated 2 h prior to ischemia.

2.4. Water maze task

A plastic rectangular water maze (80 cm×50 cm×20 cm)
used in previous report (Liu et al., 1998) was filled to height of
6 cm with water at 25±2 °C. The inner space of the water maze
was separated by partitions to form an irregular path and four
non-exits. The platform is invisible for the mouse until it swims
to the end point of the path. Therefore, whether it can find the
platform depends on learning and memory rather than visual



Fig. 1. Effects of huperzine A on the spatial performance deficits induced by
transient cerebral ischemia and reperfusion in water maze. Mice were orally
administrated with huperzine A (0.2 mg/kg/day, started 2 days before surgery
and lasted for 7 days after surgery). Tests were performed at the seventh day after
surgery. (A) Time to find the platform, (B) number of entering non-exit. Data
were expressed as means±S.E.M., n=12, #Pb0.05, ##Pb0.01 vs. sham-
operated group; ⁎⁎Pb0.01 vs. ischemia group.

Table 1
Sense and antisense sequences of primers used in the RT-PCR reactions

Gene 5′ (sense) and 3′ (antisense) primer

β-Actin 5′-CCTGCGTCTGGACCTGGCTG-3′ (sense)
5′-CTCAGGAGGAGCAATGATCT-3′ (antisense)

NGF 5′-CTTCAGCATTCCCTTGACAC-3′ (sense)
5′-AGCCTTCCTGCTGAGCACACA-3′ (antisense)

BDNF 5′-AGGTGAGAAGAGTGATGACCATCC-3′ (sense)
5′-CAACATAAATCCACTATCTTCCCC-3′ (antisense)

TGF-β1 5′-TGGACCGCAACAACGCCATCTATGAGAAAACC-3′ (sense)
5 ′-TGGAGCTGAAGCAATAGTTGGTATCCAGGGCT-3 ′
(antisense)
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cues. Mouse was placed on the water maze with nose towards
the wall of the starting point and trained to find the platform
through the right pathway. Each mouse received two training
sessions daily for 7 consecutive days before surgery towards a
criterion of finding the platform within 30 s and less than two
errors of entering non-exit. When the training procedure ended,
mice that came up to the criterion were chosen and randomly
divided into three groups. At the seventh day post-surgery,
behavioral test was performed 2 h after administration of
huperzine A. Number of errors and time period of finding the
platform were recorded. If a mouse failed to find the platform
within 60 s, the time period was recorded as 60 s.

2.5. Morphology

Three or four mice chosen randomly from each group were
anesthetized with chloral hydrate (350 mg/kg, i.p.) immediately
after behavior test and then perfused transcardially with normal
saline followed by 4% paraformaldehyde. Whole brains were
separated and then post-fixed in the same paraformaldehyde
at 4 °C, dehydrated and subsequently embedded in paraffin
blocks. Coronal sections of 8 μM were stained with hema-
toxylin–eosin.

2.6. RT-PCR

Mice were sacrificed 3, 6 and 9 h after surgery, respectively.
After the cerebral cortex and hippocampus were separated, total
RNAwas isolated using TRIzol reagent according to the manu-
facture's protocol and was quantified by absorbance at 260 nm.
RNA purity was determined by the A260/A280 ratio (average
N1.85). Total RNA of each sample was first reverse-transcribed
into cDNA using Reverse Transcription System. PCR amplifi-
cation was performed with reagents from Promega. The cDNA
solution was amplified with primers (Table 1) based on the NGF,
BDNF and TGF-β1 sequences. Amplifications were performed
as following: NGF: 30 cycles of 95 °C for 60 s, 60 °C for 45 s and
72 °C for 60 s; BDNF: 35 cycles of 95 °C for 30 s, 60 °C for 60 s
and 72 °C for 120 s; TGF-β1: 30 cycles of 95 °C for 30 s, 60 °C
for 60 s and 72 °C for 120 s; β-actin: 25 cycles of 95 °C for 30 s,
57 °C for 45 s and 72 °C for 60 s. PCR products were normalized
in relation to standards of β-actin and separated by 1.5% agarose
gels containing 0.5 μg/ml ethidium bromide and photographed
by an ultraviolet gel documentation system.
2.7. Extraction and measurement of NGF, BDNF and TGF-β1

Mice were sacrificed immediately after behavioral test, and
the brain cortex and hippocampus were quickly separated and
kept in ice. Cortex and hippocampus were homogenized with an
ultrasonic cell disrupter in 2 ml and 0.5 ml ice-cold lysis buffer
[HEPES 25 mmol/l, MgCl2·6H2O 5 mmol/l, EDTA·2Na
5 mmol/l, pH 7.4, 0.5% (v/w) Triton X-100, DTT 5 mmol/l,
PMSF 2 mmol/l, Pepstation A 10 μg/ml, Leupetion 10 μg/ml],
respectively. The lysates were centrifuged at 10,000×g for
10 min at 4 °C and the supernatant solutions were collected. The
supernatant from each sample was diluted five times with
Dulbecco's PBS and acidified to pH 2.6. After 15 min of stay at
room temperature, the diluted supernatants were neutralized to
pH 7.6, of which the gross protein were measured by Coomassie
blue protein binding method using bovine serum albumin as
standard. NGF, BDNF and TGF-β1 in the cerebral cortex and
hippocampus were measured by a two-site enzyme-linked im-
munosorbent assay (ELISA) using NGF Emax®, BDNF Emax®
and TGF-β1 Emax® Immunoassay system, respectively, accord-
ing to the manufacture's protocols.



Fig. 2. Effects of huperzine A on morphologic changes induced by transient cerebral ischemia and reperfusion in mice (haematocylin and eosin staining). Mice were
orally administrated with huperzine A (0.2 mg/kg/day, started 2 days before surgery and lasted for 7 days after surgery). (I) Frontal cortex; (II) CA1 region in
hippocampus: (A, B) sham-operated mice; (C, D) mice subjected to transient cerebral ischemia and reperfusion; (E, F) mice subjected to transient cerebral ischemia
and reperfusion plus treatment of huperzine A. Representative phase contrast micrographs: A, C, E: 100× magnification; B, D, F: 400× magnification.
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2.8. Western blot analysis of phospho-ERK 1/2 and ERK 1/2

Mice were sacrificed 3 h, 24 h and 7 days after surgery,
respectively. Cortex and hippocampuswere homogenizedwith an
ultrasonic cell disrupter in 1ml and 0.3 ml ice-cold lysis buffer (as
shown in the previous section), respectively. Lysates were
centrifuged at 10,000×g for 10 min at 4 °C and the supernatant
solutions were collected. The protein concentrations were
determined by Coomassie blue protein binding method using
bovine serum albumin as standard. Samples containing equal
amounts of protein (50 μg) were boiled in protein loading buffer
for 10 min, separated on 10% SDS-polyacrylamide gels and
transferred to nitrocellulose membranes. After blocking with
TBST (Tris-buffered saline with 0.1% Tween) containing 5%
non-fat milk, the membranes were kept at 4 °C overnight with
primary antibodies to phospho-ERK 1/2, ERK 1/2 (1:1000
dilution) and GAPDH (1:8000 dilution), respectively, followed
by HRP-conjugated anti-rabbit or anti-mouse IgG at room
temperature for 2 h. The target protein bands were detected
using the ECL plusWestern blotting detection system and Kodak
X-ray film.

2.9. Statistical analysis

Data were expressed as means±S.E.M. Statistical analysis
was performed by one-way analysis of variance (ANOVA) fol-
lowed by Duncan's multiple-range test, with Pb0.05 as the
significant level.
3. Results

3.1. Effects of huperzine A on memory deficits induced by
transient cerebral ischemia and reperfusion

Mice subjected to transient cerebral ischemia and reperfusion
showed prolonged latency to find the platform (Fig. 1A) and
increased errors of entering non-exit (Fig. 1B) (Pb0.01, Pb0.05
vs. sham-operated group) in the water maze task. These memory
deficits were markedly attenuated by huperzine A at a dose of
0.2 mg/kg (Pb0.01 vs. ischemia group).

3.2. Effects of huperzine A on morphologic alterations in the
cerebral cortex and hippocampus induced by transient
cerebral ischemia and reperfusion

As shown in Fig. 2, typical neuropathological changes were
observed in the cerebral cortex and hippocampus at the seventh
day after transient cerebral ischemia and reperfusion. Histolog-
ical observation of the cerebral cortex and hippocampus in
sham-operated mice showed that neurons were clear and mo-
derate-sized with normal microstructure, while the cor-
responding brain regions in mice suffering from transient
cerebral ischemia and reperfusion exhibited significant neuronal
loss, shrinkage and dark staining. Neuronal death and loss were
especially obvious in frontal cortex and CA1 region of
hippocampus. These pathologic changes were prominently
suppressed in mice treated with huperzine A.



Fig. 3. Time course of NGF, BDNF and TGF-β1 mRNA expressions in the cerebral cortex and hippocampus of mice. Total RNAwas isolated and subjected to RT-
PCR. (A) The PCR products were normalized by β-actin. Lanes 1–3: sham-operated mice in 3, 6, 9 h after reperfusion, respectively; lanes 4–6: ischemic mice in 3, 6,
9 h after reperfusion, respectively; lanes 7–9: ischemic mice treated with huperzine A (0.2 mg/kg/day) in 3, 6, 9 h after reperfusion, respectively. (B) Cortex and (C)
hippocampus were quantitative summaries of results in (A). Data were means±S.E.M. expressed as percentage of control value, n=4.
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3.3. Effects of huperzine A on the mRNA and protein levels of
NGF, BDNF and TGF-β1

For analysis of NGF, BDNF and TGF-β1 mRNA levels, a
comparative PCR approach was used to measure the target
cDNAs amplified from the mRNA samples (Fig. 3). NGF,
BDNF and TGF-β1 mRNA levels were up-regulated at 3, 6 and
9 h after reperfusion in the cerebral cortex and hippocampus.
Huperzine A at 0.2 mg/kg produced a more pronounced increase
on the expression of NGF, BDNF and TGF-β1 mRNA compared
with transient cerebral ischemia and reperfusion group. How-
ever, these changes were not statistically significant.

The effects of huperzine A on products of these genes were
confirmed by ELISA assay (Fig. 4). At the seventh day after
surgery, the protein levels of NGF, BDNF and TGF-β1 in the
cerebral cortex and hippocampus of ischemic mice were almost
similar to those of sham-operated group. However, they were
enhanced by huperzine A (0.2 mg/kg) to measurably above the
control level in the cerebral cortex and hippocampus (Pb0.01,
Pb0.05 vs. sham-operated group).

3.4. Effects of huperzine A on phosphorylation of MAPK/ERK
1/2 kinases

The effects of huperzine A on phosphorylation of ERK 1/2
kinases in the cerebral cortex and hippocampus were determined
by Western blot analysis (Fig. 5). Immunoblotting was per-
formed with an antibody recognizing the ERK 1 and ERK 2
double phosphorylation on Thr 202 and Tyr 204 residues or with
an antibody recognizing ERK 1/2 regardless of its phosphory-
lation state. Transient cerebral ischemia and reperfusion
significantly increased ERK 1/2 phosphorylation in the cerebral
cortex and hippocampus at 3 h, 24 h and 7 days after reperfusion
(Pb0.01, Pb0.05 vs. sham-operated group). Increases of ERK



Fig. 4. Effects of huperzine A on NGF, BDNF and TGF-β1 content in the
cerebral cortex and hippocampus by ELISA assay. Mice were subjected to
transient cerebral ischemia and reperfusion for 7 days. Subchronic oral
administration of huperzine A (0.2 mg/kg/day) was started 2 days before
surgery and lasted for 7 days after surgery. (A) The NGF content, (B) the BDNF
content, (C) the TGF-β1 content. Data were means±S.E.M. expressed as
percentage of control value, n=9, ⁎Pb0.05, ⁎⁎Pb0.01 vs. ischemia group.
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1/2 phosphorylation in the cerebral cortex and hippocampus
were more prominent in the huperzine A-treated group (Pb0.01,
Pb0.05 vs. ischemia group). On the other hand, total ERK 1/2
proteins remained unaffected in the cerebral cortex and hippo-
campus throughout.

4. Discussion

Huperzine A has been found to exhibit a broad range of
neuroprotective activities (Wang and Tang, 2005). In our recent
studies focusing on the correlation between neurotrophic effects
of huperzine A and NGF, we have observed that huperzine A can
increase NGF secretion in astrocytes, induce neurotrophin-like
activity in neuron-like PC12 cells (Tang et al., 2005a) and
protect SHSY5Y neuroblastoma cells against oxidative stress
damage via promoting NGF production (Tang et al., 2005b).
These in vitro findings suggest that the neuroprotective effects of
huperzine A are mediated at least partly by NGF production and
its downstream signaling pathway. In the present study, using
mice subjected to transient cerebral ischemia and reperfusion,
we determined whether huperzine A possessed these neuro-
trophic effects in vivo and tried to clarify the potential down-
stream signaling pathway.

It is well known that delayed neuronal death follows transient
cerebral ischemia in selective, vulnerable regions of the brain,
especially in the hippocampus. The deficits in learning and
memory induced by ischemia show a close correlation with
neuronal death in the hippocampal CA1 region (Block, 1999).
Consistent with the previous reports (Zhao et al., 1998; Tang
et al., 1998; Xu et al., 2004), BCCAo combined with systemic
hypotension induces ischemic insult in mice, resulting inmarked
amnesic effects along with signs of neurodegeneration, includ-
ing memory deficits as shown by increased errors of entering
non-exit and prolonged latency to find the platform and sig-
nificant neuronal death and loss in the cerebral cortex and
hippocampus especially in CA1 region. Our results indicate that
neuronal damage might contribute to behavioral impairment in
this ischemic model. Subchronic oral administration of huper-
zine A significantly attenuated transient cerebral ischemia and
reperfusion-induced histological lesions in the brain and im-
proved the water maze performance. These results support our
previous studies (Zhou et al., 2001; Wang et al., 2000), and
provide direct histopathological and behavioral evidence for the
protective effects of huperzine A against transient cerebral is-
chemia and reperfusion. Such findings raise the important
questions about the underlying mechanisms.

The neurotrophin family of growth factors, such as NGF,
BDNF, NT3–5, bind and activate specific tyrosine kinase (Trk)
receptors to promote cell survival and growth of different cell
populations. Therefore, growing attention has been paid to the
use of neurotrophins as therapeutic agents against neurodegen-
eration. Numerous studies have documented that NGF and
BDNF possess neuroprotective functions in the cerebral cortex
and hippocampus, which are particularly vulnerable to cerebral
ischemia (Shigeno et al., 1991; Pechan et al., 1995; Schabitz
et al., 1997; Beck et al., 1994). Up-regulation of NGF and BDNF
expression has been found in the brains of rats after middle
cerebral artery occlusion (MCAO), and been considered to play
an important role in the protection of ischemic injured neuronal
cells (Kokaia et al., 1995). Neuroprotective effect of TGF-β1 has
been elucidated in many animal models of cerebral ischemia
(Prehn et al., 1993; Gross et al., 1993; Henrich-Noack et al.,
1996). This factor is minimally expressed in the intact brain and
has been found to be strongly up-regulated in the central nervous
system following ischemia-induced brain damage (Zhu et al.,
2000). In light of these findings and the neurotrophic effects of
huperzine A in vitro (Tang et al., 2005a,b), it is reasonable to
propose that neurotrophic factors might participate in the neu-
roprotective effects of huperzine A against transient cerebral
ischemia and reperfusion. The expression of neurotrophic fac-
tors in hippocampus and cerebral cortex has been shown to be



Fig. 5. Effects of huperzine A on ERK 1/2 and phospho-ERK 1/2 levels in the cerebral cortex and hippocampus by western blot. (A) The protein products were
normalized by GAPDH. Lane 1: sham-operated mice; lanes 2, 4, 6: ischemic mice in 3 h, 24 h and 7 days after reperfusion, respectively; lanes 3, 5, 7: mice treated with
huperzine A (0.2 mg/kg/day) in 3 h, 24 h and 7 days after reperfusion, respectively. (B) ERK 1/2 and (C) Phospho-ERK 1/2 were quantitative summaries of results in
(A). Data were means±S.E.M. expressed as percentage of control value, n=5, #Pb0.05, ##Pb0.01 vs. sham-operated group; ⁎Pb0.05, ⁎⁎Pb0.01 vs. ischemia group.
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up-regulated after ischemic insults and the elevated expression
may play an important role in protection of ischemic injured
neuronal cells (Tsukahara et al., 1998; Wei et al., 2000;
Yanamoto et al., 2000). In accordance with these previous
reports, we found that the NGF, BDNF and TGF-β1 mRNA
levels in the cerebral cortex and hippocampus were observed to
immediately increase after reperfusion, but it was a transient and
stress-activated response. Together with the findings that mice
suffered from ischemia and reperfusion exhibited memory
deficits and neuronal death, we think it was far from enough to
survive from ischemic injury with this self-protection alone.
Compared with stress-activated self-protection, however, huper-
zine A further and persistently increased neurotrophic factors
production, and significantly attenuated behavioral and mor-
phologic signs of damage. Since overexpressions of neuro-
trophic factors were thought to be protective against cerebral
ischemic injury (Ding et al., 2004), we suggest that the capability
of huperzine A to further increase NGF, BDNF and TGF-β1

expressions may contribute to its neuroprotective effects against
ischemic insult. Hence, the neurotrophic effects of huperzine A
are verified in vivo.

NGF and BDNF bind to specific receptors, which are
structurally related and belong to the Trk family of receptor
tyrosine kinase, and these receptors mediate their biological
responses to neurotrophins by activating multiple signaling path-
ways, including the activation of the MAPK isoforms ERK 1 and
ERK 2 (Greene and Kaplan, 1995). MAPK/ERK pathway is also
probably involved in the TGF-β1 signaling (Massague, 2000).
Dominant negative forms of Raf and MEK have been shown to
block neurotrophin-induced neuritogenesis, whereas constitu-
tively active forms of these elements promote neurite outgrowth
in the absence of neurotrophins (Segal and Greenberg, 1996;
Skaper and Walsh, 1998). These studies highlight the importance
of MAPK/ERK pathway in neurotrophic signaling. More recent
data have accumulated showing that phospho-ERK 1/2 is up-
regulated in rodents after global ischemia and MCAO (Hu et al.,
2000; Irving et al., 2000). The observation that phospho-ERK 1/2
levels increased in survival cells and decreased in dead cells after
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focal and global ischemia suggested that activation of the ERK 1/
2 “survival” pathway might be required to prevent cells suc-
cumbing to ischemia-induced death. Furthermore, abundant evi-
dences indicate the important role of MAPK/ERK pathway in the
neuroprotective effects of the neurotrophic factors against
ischemia-induced injury (Han and Holtzman, 2000; Zhu et al.,
2002). Consistent with previous reports (Hu et al., 2000; Irving
et al., 2000), we found that the ERK 1/2 phosphorylation were
significantly increased immediately after transient cerebral is-
chemia and reperfusion in both cerebral cortex and hippocampus,
and lasted throughout the subsequent 7 days. This phenomenon
might represent a stress reaction of self-protection. Oral admi-
nistration of huperzine A could markedly enhance the phosphor-
ylation of ERK 1/2, probably potentiating this protective effect.
Our previous study showed that the neuroprotective effects of
huperzine A against H2O2-induced oxidative stress were anta-
gonized by the MAPK/ERK inhibitor, PD98059 (Tang et al.,
2005b).With these in vitro and in vivo findings, it is reasonable to
hypothesize that huperzine A increases NGF, BDNF and TGF-β1

expressions, and enhances the intracellular signaling of these
endogenously produced neurotrophic factors, resulting in protec-
tion against transient cerebral ischemia and reperfusion in mice.

In conclusion, the present study demonstrate that huperzine A
can attenuate memory deficits and neuronal damage induced by
transient cerebral ischemia and reperfusion in mice, and NGF,
BDNF and TGF-β1 are very likely to be related to the
neuroprotective effects of huperzine A. Activation of the
MAPK/ERK pathway might be important for the in vivo neu-
rotrophic effects of huperzine A against transient cerebral is-
chemia and reperfusion.
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